Efficacy of CpGV on Oriental Fruit Moth (Cydia molesta): myth or reality?

Antoine Bonhomme^{1,2} Samantha Besse¹, Ludovic Crabos², François Martinez²

- ¹ Natural Plant Protection, 35 avenue Léon Blum 64 000 Pau, France
- ² Arysta LifeScience, BP 80 route d'Artix, 64150 Noguères, France

Carpovirusine

- Virus based insecticide against Cydia pomonella
- 'Mexican isolate' CpGV-M described by Tanada in 1964
- Considered as highly selective to Codling moth
- 10¹³ CpGV per hectare
- Sold in West Europe since >15 years
- Now registered in >20 countries

Oriental Fruit Moth (OFM)

- Cydia molesta (ex-Grapholita molesta), tortrix originated from North-west of China, with worldwide distribution like Codling moth
- Main host plants are peach and nectarine trees (3-5 generations per year), secondary host plants: other top fruits and ornamentals
- Early damages on shoots, late damages on fruits
- Has become important pest on apples and pears in France, Italy, Argentina → big threat for CpGV business
 - Overlapping of generations
 - Similar damages
- → Considering closeness with Codling moth (*Cydia pomonella*) in taxonomy, is there a chance of controlling OFM with CpGV?

Scientific background – CpGV on OFM

- First publication of OFM susceptibility to CpGV by Falcon, 1969
- Greg Krawczyk (Pennstate University, USA) compared OFM and Codling moth susceptibilities to CpGV in a diet surface bioassay (personal communication, 2004)

Population	n	Slope (±SE)	LC ₅₀ (95% CL)*	LC ₉₀ (95% CL)*
OFM	200	3.44±0.8	0.042 (0.026-0.053)	0.099 (0.08-0.145)
CM	350	2.69±0.3	0.079 (0.043-0.114)	0.237 (0.157-0.633)

^{*} The LC_{50} and LC_{90} are expressed as the rate of formulated product per acre in 100 gallons of water

- → evaluation trial was set up in France by Arysta during summer 2005
- Greg's results on OFM were confirmed in 2005 (diet surface & apple fruit dip bioassays (unpublished memorandum, 2005)
- Lerry Lacey (Washington State University, USA) established susceptibility ratios of OFM/Codling moth in lab bioassays at respectively 1:557 and 1:559 for LC_{50} and LC_{90} (Lacey and Headrick, 2005)
- "Label rates of CpGV used for Codling moth control could potentially reduce OFM populations if significant feeding of early instars occurred" (Lacey et al., 2008)

Field work made by Arysta

18 trials in South Europe zone

Evaluation trial on peach

Evaluation trial, peach, France, 2005

- Positioning on second generation
- Carpovirusine efficacy 89% does confirm Greg Krawczyk 2004 lab experiment

Development trials on peach / nectarine

Development trials France, peach/nectarine

- Average efficacy of Carpovirusine 42% vs. 59% for Deltamethrin
- No statistical difference between treatments

Development trials Italy, peach/nectarine

- Average efficacy of Carpovirusine 76% vs. 82% for Deltamethrin and 68% for BTk
- No statistical difference between treatments

Demonstration trials, peach, France, 2010 and 2011

Sponsor Arysta LifeScience

2010 - medium pressure

- Carpovirusine efficacy 89%
- Comparable to all treatments

2011 - high pressure (same orchard)

- Carpovirusine efficacy 64%
- Comparable to all treatments

Complexity in apple and pear orchards

- Ratio Codling moth/OFM is multi-factorial dependent (weather, cultivar...)
- CM and OFM adult and larvae look very similar
- Damage on fruits are somehow different (entry hole vs. exit hole)
- You can tell which is which only when it is too late to spray!
- Binocular is necessary to strictly differentiate the pests
- → Growers prefer to stop using CpGV

Development trials on apple

Development trial France, apple

- High Codling moth and OFM pressure on harvest
- Considering Carpovirusine efficacy (66%) as well as larval identification in untreated fruits, demonstration is made that Carpovirusine is efficient on OFM in apple orchards

Demonstration trial France, apple

Contractor: CEFEL

Sponsor: Arysta

- Carpovirusine is more efficient than chemical reference
- No data on harvest due to 100% damage caused by CM

List of trials

Year	Country	Place	Crop	Contractor	Chemical reference	Comment
0 2005	France	Barbentane (13)	Peach (Tendresse)	PROMO-VERT	Deltamethrin, Fenoxycarb + Lannate	Efficacy of Carpovirusine (*)
0 2007	France	Bize-Minervois (11)	Peach (Gladys)	AGROTEST	Deltamethrin	Efficacy of Carpovirusine (ns)
0 2007	France	Anjou (38)	Nectarine (Sun rise)	PRESTAGRO	Deltamethrin	Efficacy of Carpovirusine (*)
0 2008	France	Auberives sur Varèze (38)	Peach (Benedicte)	PRESTAGRO	Deltamethrin, Thiachloprid	Efficacy of Carpovirusine (*)
0 2008	France	Grans (13)	Nectarine (Caldesi)	PROMO-VERT	Deltamethrin, Thiachloprid	Efficacy of Carpovirusine (ns)
0 2008	France	Bize Minervois (11)	Peach (Gladys)	AGROTEST	Deltamethrin	Efficacy of Carpovirusine (ns)
0 2009	France	Bize-Minervois (11)	Peach (Gladys)	AGROTEST	Deltamethrin	Efficacy of Carpovirusine (*)
0 2009	Italy	Stocchetta (IT)	Peach (Maria bianca)	STAPHYT	Deltamethrin	Efficacy of Carpovirusine (*)
0 2009	Italy	Imola (IT)	Nectarine	STAPHYT	Deltamethrin	Low pressure - trial discarded
0 2009	Italy	Martorano di Cesena (IT)	Peach	STAPHYT	Deltamethrin	Low pressure - trial discarded
0 2009	France	Grans (13)	Peach (Lucie)	PRESTAGRO	Deltamethrinn, Btk	Efficacy of Carpovirusine (ns)
0 2010	Italy	CESENA	Peach	STAPHYT	Deltamethrinn, Btk	Efficacy of Carpovirusine (*)
0 2010	Italy	Arcagna	Peach	STAPHYT	Deltamethrinn, Btk	Efficacy of Carpovirusine (*)
0 2010	Italy	Ravenna	Nectarine	STAPHYT	Deltamethrinn, Btk	Efficacy of Carpovirusine (*)
0 2010	France	Lafitte sur Lot (47)	Apple (Galaxi)	PRESTAGRO	Lambda-cyalothrin, Btk	Efficacy of Carpovirusine (*)
2010	France	Pyrénées Orientales (66)	Peach	Chambre Agr. 66	Deltamethrin, Thiachloprid, Btk, Spinosad	Efficacy of Carpovirusine (*)
2011	France	Pyrénées Orientales (66)	Peach	Chambre Agr. 66	Lambda-cyalothrin, Btk, Spinosad	Efficacy of Carpovirusine (*)
2011	France	Montauban (82)	Apple (Granny Smith)	CEFEL	Emmamectin benzoate	Efficacy of Carpovirusine (*)

- Arysta set up 18 'randomized small-plot' trials on OFM with Carpovirusine (FR, IT)
- 15 of them are official, GEP trials
- 13 of them clearly demonstrate Carpovirusine efficacy (9 * / 4 ns) → registration
- All those trials (13) + 3 demo trials are presented here

OFM products toolbox 2011, France

peach	apple	Trademark	Active ingredient	Max.	PHI	ZNT	dose/ha
X	Χ	Calypso ^{Bayer}	Thiacloprid	2	14	50	0.25
X	Χ	Décis Protech ^{Bayer}	Deltamethrin	3	3 (7)	50	0.83
X	Χ	Affirm ^{Syngenta} new	Emamectine benzoate	3	7 (3)	50	2.00
X	Χ	Coragen ^{DuPont} new	Chlorantraniliprole (rynaxypyr)	1	14	20	0.18
X	Χ	Karate Zeon ^{Syngenta}	Lambda-cyhalothrin	-	7	-	0.18
X		Insegar ^{Syngenta}	Fenoxycarbe	2	14	-	0.30
X		Steward ^{DuPont} new	Indoxacarb	4	7	20	0.17
X		Success 4 ^{Dow}	Spinosad	2	7	50	0.20
X	Χ	Isomate-OFM Sumi-Agro new	Mating disruption	-	-	-	500
X		Rak 5 ^{BASF}	Mating disruption	-	-	-	500
(X)	(X)	Carpovirusine Arysta 2012	CpGV	-	3	-	1.0
X	Χ	Delfin ^{Certis}	Btk 3a 3b	-	3	-	1.0

- Many new specialties against OFM in France in 2011
- Toolbox against OFM is larger on peach/nectarine than on apple/pear
- Broad spectrum chemical specialties have stronger and stronger restrictions of use (number of sprays per season, pre-harvest intervals (DAR), minimum buffer distance (ZNT))
- Alternative solutions (in green) are becoming more and more essential in many orchards, especially close to harvest time

Conclusion

- Carpovirusine CpGV M efficacy on OFM
 - Is at least similar as that of other Biocontrol products (Bt, Spinosad)
 - Is somehow comparable to that of chemical insecticides
 - Is comparable to that of Carpovirusine on Codling moth
- Carpovirusine is a new residue free solution for OFM control in peach, nectarine and apple orchards
 - In organic farming
 - In IPM, to be used in a program with chemical insecticides
- Business-wise, this innovation will
 - Open the core-fruits market
 - Secure Carpovirusine sales in South of France and Italy
 - Reinforce its role as an alternative to chemicals in IPM programs
 - Confirm Arysta as a solution provider for sustainable agriculture

Thank you for your attention!

